
Preprint

LEGO-EVAL: TOWARDS FINE-GRAINED EVALUATION
ON SYNTHESIZING 3D EMBODIED ENVIRONMENTS
WITH TOOL AUGMENTATION

Gyeom Hwangbo1∗ Hyungjoo Chae2∗

Minseok Kang1 Hyeonjong Ju1 Soohyun Oh1 Jinyoung Yeo1

1 Yonsei University 2Georgia Institute of Technology

ABSTRACT

Despite recent progress in using Large Language Models (LLMs) for automati-
cally generating 3D scenes, generated scenes often lack realistic spatial layouts
and object attributes found in real-world environments. As this problem stems
from insufficiently detailed, coarse-grained instructions, advancing 3D scene syn-
thesis guided by more detailed, fine-grained instructions that reflect real-world
environments becomes crucial. Without such realistic scenes, training embodied
agents in unrealistic environments can lead them to learn priors that diverge signif-
icantly from real-world physics and semantics, degrading their performance when
deployed. Thus, verifying the alignment between the fine-grained instruction and
the generated scene is essential for effective learning. However, current evaluation
methods, such as CLIPScore and vision-language models (VLMs), often fail to
reliably assess such alignment. This shortcoming arises primarily from their shal-
low understanding of 3D scenes, which often leads to improperly grounded scene
components. To address this, we introduce LEGO-EVAL, an evaluation frame-
work equipped with diverse tools designed to explicitly ground scene components,
enabling more accurate alignment assessments. We also present LEGO-BENCH,
a benchmark of detailed instructions that specify complex layouts and attributes
of real-world environments. Experiments demonstrate that LEGO-EVAL outper-
forms VLM-as-a-judge by 0.41 F1 score in assessing scene-instruction alignment.
Benchmarking with LEGO-BENCH reveals significant limitations in current gen-
eration methods. Across all evaluated approaches, success rates reached at most
10% in generating scenes that fully align with fine-grained instructions. Our code
and dataset are available at: https://gyeomh.github.io/LEGO-Eval/.

1 INTRODUCTION

Embodied agents represent a paradigm shift from digital assistants to physical collaborators (Shrid-
har et al., 2020; Brohan et al., 2022; Chang et al., 2025). While training agents in the physical
world is feasible, it is impractical due to the slow pace of real-time learning and the escalating costs
of scaling across multiple environments. Consequently, training in realistic simulators has become
the dominant approach, allowing agents to learn real-world physics and semantics through naviga-
tion and interaction in 3D scenes (Xiang et al., 2020; Makoviychuk et al., 2021; Li et al., 2022).
Training in realistic scenes is critical, as unrealistic scenes can prevent agents from learning the
physical and semantic understanding of scene components—such as objects, walls, doors, windows,
and rooms—ultimately limiting their effectiveness in real-world deployment. For instance, an agent
trained in a kitchen without a refrigerator may fail to locate one, open it, and retrieve items dur-
ing deployment, due to insufficient understanding of the presence and function of the refrigerator.
While simulators aim to provide such realism, popular platforms such as AI2THOR (Kolve et al.,
2017) rely on manually created 3D environments by experts—a labor-intensive and costly process
that severely limits diversity. This limitation in number of scenes can lead to failures in real-world
tasks that involve much greater variation in environment.

∗Equal contribution. This work was done at Yonsei University.

1

https://gyeomh.github.io/LEGO-Eval/

Preprint

Figure 1: LEGO-EVAL performs multi-hop
grounding using tool-retrieved multimodal infor-
mation (left), whereas VLMs fail to ground pen-
cils in the scene (right).

To scale up the number of scenes, recent work
has explored automatic scene generation us-
ing Large Language Models (LLMs) and ran-
dom sampling (Deitke et al., 2022; Yang et al.,
2024b). These methods often generate scenes
without explicit textual guidance, or rely only
on coarse-grained instructions (e.g., “Modern-
style kitchen”). While effective for generating
many scenes, they frequently yield unrealistic
environments—such as a kitchen missing a re-
frigerator or bookshelves obstructing a window.
Training in these scenes can mislead agents to
develop incorrect understandings of the phys-
ical world. To mitigate this, scene generation
can be guided by fine-grained instructions that
describe the real-world environment in detail.
Thus, fully satisfying the constraints in such de-
tailed instructions is crucial for generating real-
istic scenes that enable robust agent training.

However, existing evaluation methods cannot reliably verify constraint satisfactions. This unrelia-
bility stems from their inability to perform multi-hop grounding: (1) identifying scene components
mentioned in the instruction, and (2) verifying their attributes and spatial relationships. For ex-
ample, assessing the constraint “a blue chair placed next to the black desk” involves locating both ob-
jects in the scene, verifying their colors, and evaluating their spatial relationship. Current approaches
lack capability for such multi-hop grounding. One widely adopted method, CLIPScore (Hessel et al.,
2021), is inadequate due to the limited capacity of CLIP (Radford et al., 2021) to interpret complex
3D scenes (Hegde et al., 2023; Ma et al., 2023). Similarly, vision-language models (VLMs) used
as judges also struggle with precise localization of scene components, as shown in Figure 1, which
limits their ability to assess attributes or spatial relations (Li et al., 2024).

To address these limitations, we introduce LEGO-EVAL (Language-guided Environment
Generation for embOdied agents), a comprehensive evaluation framework for assessing text-guided
3D scene synthesis. By utilizing a diverse set of tools, LEGO-EVAL effectively grounds scene
components and retrieves relevant information. For rigorous evaluation, our method first identifies
constraints within the instruction and then evaluates each individually, providing binary judgments
accompanied by detailed, interpretable explanations. We also release LEGO-BENCH, a curated
dataset of fine-grained textual instructions that contain constraints about real-world environments.
The instructions in the benchmark include diverse attributes and spatial relationships of scene com-
ponents, capturing a wide range of realistic scene aspects. Together, LEGO-EVAL and LEGO-
BENCH provide a robust framework for evaluating text-guided 3D scene synthesis.

Empirical results highlight the effectiveness of our approach. LEGO-EVAL achieves an F1 score
of 0.81 and a Cohen’s kappa of 0.63 for instruction-scene alignment, demonstrating substantially
stronger alignment with human judgments. In contrast, the VLM-as-a-judge baseline shows low
agreement, with scores of only 0.40 and 0.05, respectively. We further leverage LEGO-EVAL to
benchmark existing LLM-based scene generation methods on LEGO-BENCH, revealing that exist-
ing methods achieve success rates of at most 10% in fully satisfying instructions.

2 RELATED WORK

Text-guided 3D scene synthesis. Early work explored rule-based pipelines, spatial priors, and
database composition (Coyne & Sproat, 2001; Chang et al., 2014; Ma et al., 2018). With the advent
of neural generative models, diffusion-based pipelines have emerged as a dominant paradigm for
text-to-3D synthesis (Höllein et al., 2023; Ma et al., 2024; Tang et al., 2024; Zhou et al., 2025;
Fang et al., 2025). Recently, LLMs and VLMs have also been adopted for indoor scene generation,
leveraging their real-world priors to act as effective compositional planners. Prior works generally
fall into three categories. Scene-level generation approaches (Feng et al., 2023; Yang et al., 2024b;
Bucher & Armeni, 2025) generate complete 3D environments directly from language instructions.

2

Preprint

Object selection and placement methods (Yang et al., 2024a; Çelen et al., 2025) focus on selecting
relevant objects and determining their placements. Meanwhile, layout optimization methods (Sun
et al., 2025; Ran et al., 2025) aim to optimize the spatial arrangement of predefined assets.

Automatic evaluation for 3D scene synthesis. Evaluating text-guided 3D scene synthesis with
fine-grained instructions requires verifying whether generated scene includes all specified con-
straints, which is a complex task involving multi-hop grounding. For example, assessing “a blue
chair placed next to the black desk” demands identifying objects, verifying attributes, and check-
ing spatial relationships. Current methods typically rely on two approaches: (1) CLIPScore (Öcal
et al., 2024; Fu et al., 2024; Deng et al., 2025), which measures the CLIP similarity between a top-
down image of the scene and the instruction, (2) prompting VLMs (Wang et al., 2024b; Çelen et al.,
2025; Sun et al., 2025; Ling et al., 2025), providing VLMs with the instruction along with images
of the scene captured from multiple viewpoints. However, these methods lack deep understanding
of 3D scenes, which limits multi-hop grounding (Ma et al., 2023; Li et al., 2024). To address this,
SceneEval (Tam et al., 2025) predefines evaluation criteria such as object count and attributes, and
object-object, object-architecture spatial relations, but cannot evaluate attributes and spatial relations
of architectures (e.g., “Sliding window is on orange wall”). The spatial relations are also predefined
to basic relations (e.g., left, near), limiting evaluation of diverse spatial expressions such as “The
table is closer to the chair than bed”. In contrast, LEGO-EVAL supports spatial reasoning across all
scene components and can handle a broad range of relationships expressed in natural language.

Tool-augmented language models. LLMs are often augmented with external tools to overcome
its limitations of parametric memory. Many works augment LLMs with external tools to improve the
aspects such as factuality (Komeili et al., 2022), math abilities (Imani et al., 2023), and solve com-
plex tasks (Paranjape et al., 2023; Chen et al., 2023; Patil et al., 2024). There has also been growing
interest in augmenting language models with multimodal tool use. VisProg (Gupta & Kembhavi,
2023) and ViperGPT (Surı́s et al., 2023) integrate vision modules with Python-based text utilities to
decompose and solve visual reasoning tasks. In contrast, AVIS (Hu et al., 2023) and Chameleon (Lu
et al., 2023) combine vision tools with textual functions such as knowledge retrieval or tabular
processing, targeting broader multimodal information-seeking and compositional reasoning. Our
evaluation method similarly augments VLMs with multimodal tools for environment interaction,
textual reasoning, and multimodal reasoning, supporting multi-hop grounding in 3D scenes.

3 LEGO-EVAL: EVALUATION WITH TOOL-AUGMENTED VLMS

Evaluating 3D scenes requires localizing individual scene components, and retrieving their detailed
information about attributes and spatial layout. To support this, LEGO-EVAL is augmented with a
diverse suite of tools capable of retrieving both visual and textual information from the scene.

3.1 EVALUATION FRAMEWORK

Leveraging diverse tools, our framework aims to rigorously evaluate the alignment between fine-
grained instructions and generated 3D scenes. Specifically, given fine-grained instruction I and
generated scene S, evaluator provides binary judgment J along with evaluation explanations E:

J,E ← Eval(I | S) (1)

As shown in Figure 2, our evaluation framework consists of the following four steps:

Step 1: Constraint Identification. To enable rigorous evaluation, we begin by identifying con-
straints C = (c1, . . . , ck) within each instruction I . Fine-grained instructions include multiple con-
straints, each contributing to aspects of the desired scene. LEGO-EVAL identifies these constraints
and categorizes them into one of four types, similar to the modules in Holodeck (Yang et al., 2024b):

• Floor Layout: Constraints that define the spatial layout of rooms, walls, doors, and windows.
• Material Selection: Constraints specifying the visual appearance of floors and walls.
• Object Selection: Constraints describing the appearance of objects, including doors and windows.
• Object Placement: Constraints that determine object placement and rotation within the scene.

3

Preprint

Figure 2: Overview of LEGO-EVAL. LEGO-EVAL plans tool execution using diverse tools, and
selects arguments before executing each tool. Constraints are evaluated using the collected outputs.

Figure 3: Diverse tools included in our tool set.

Step 2: Tool Execution Planning. The con-
straints identified in the previous step are eval-
uated sequentially. Given the current constraint
and explanations of prior constraint evaluations,
the model generates a tool execution plan along
with the rationale behind its planning decisions.
Often, the necessary information for evaluation
has already been retrieved from earlier assess-
ments. For instance, verifying whether “the cup
is on the red table” first requires confirming the
existence of a red table, which may have been al-
ready confirmed in earlier constraint evaluations.
Therefore, by leveraging such prior results, the
model avoids redundant tool executions. Based
on the constraint and prior evaluations, LEGO-
EVAL selects tools from the tool set that excludes those irrelevant to the constraint type. Then, it
generates a graph-structured execution plan that supports parallel tool executions, enabling efficient
evaluation.

Step 3: Tool Argument Selection & Execution. Accurate validation depends not only on selecting
the right tool but also on choosing appropriate arguments. Without appropriate arguments, even the
correct tool may return irrelevant output. To guide this process, we provide LEGO-EVAL —prior
to each tool execution—with contextual input that helps the model infer the tool’s intended role and
determine the information needed for validation. Specifically, the instruction, constraint, execution
plan, and its rationale enable the model to infer the tool’s intended function within the current context
and clarify what information needs to be extracted. The model then selects appropriate arguments
by drawing on both prior tool outputs (e.g., a list of rooms) and explanations from earlier constraint
evaluations (e.g., “The table (id: table-2) is red”), which identify scene components in context. Once
the arguments are selected, the tool is executed to retrieve the information of those components.

Step 4: Constraint Validation. After executing all tools, the model assesses whether the generated
scene satisfies each constraint based on the corresponding tool outputs. A scene is deemed valid
only if it fulfills all constraints C specified in the instruction I .

4

Preprint

Figure 4: Statistics of LEGO-BENCH.

3.2 TOOL SET

To robustly ground scene components and accurately retrieve their attributes and spatial configura-
tions, we enhance LEGO-EVAL with 21 diverse tools (Figure 3). These tools are grouped into three
distinct types, each designed to address a specific aspect of scene understanding:

• Environment Interaction: These tools interact with the Unity environment to retrieve visual
information such as object appearance and spatial arrangements, that text cannot fully represent.

• Textual Reasoning: These tools retrieve textual descriptions from structured scene representa-
tions such as exact coordinates or occluded object attributes, that image cannot reliably provide.

• Multimodal Reasoning: These tools convert visual information into textual descriptions to re-
trieve specific information from images. Since VLMs struggle with multi-image inputs (Wang
et al., 2024a), we use LLMs and VLMs to convert images into text descriptions.

Descriptions of each tool can be found in Appendix C.3.

3.3 LEGO-BENCH

Real-world indoor environments are composed not only of objects but also of architectural com-
ponents such as walls, doors, windows, floors, and room layouts. Reflecting this, we introduce
LEGO-BENCH —a benchmark designed to evaluate LLM-based 3D scene synthesis methods, with
a focus on both the attributes and spatial relationships of all scene components.

Dataset collection. We manually collect instructions for 3D scene synthesis. These instructions
describe scenes with multiple constraints, curated based on real-world images and empirical obser-
vations of indoor spaces. To enable fair comparison between methods, each instruction is annotated
with constraints and constraint types. We also provide manually curated scenes that fully satisfy the
instructions. Further details on our dataset collection procedure can be found in Appendix B.2.

Statistics. Figure 4 summarizes key statistics of our collected dataset. The LEGO-BENCH bench-
mark includes 130 natural- language instructions paired with manually annotated scenes, encom-
passing a total of 1,250 constraints. On average, each instruction specifies 9.6 constraints, with the
majority falling between 9 and 11. These constraints span a broad range of scene elements: 55%
involve objects, while 39% target architectural components. We further categorize constraints based
on their semantics—approximately 40% relate to material and object selection, and the remaining
60% involve floor layout and object placement. Together, these distributions highlight the complex-
ity and diversity of real-world environments captured by LEGO-BENCH.

4 EXPERIMENTS

To evaluate the effectiveness of LEGO-EVAL, we conduct experiments in evaluating text-guided
3D scene synthesis, focusing on the agreement with human judgments. Additionally, existing LLM-
based 3D scene synthesis methods are benchmarked on LEGO-BENCH, revealing their limitations.

5

Preprint

Methods Holistic ↑ Partial ↑
F1 Recall Precision Cohen’s κ F1 Recall Precision Cohen’s κ

SceneEval*

Full Dataset 0.33 0.50 0.25 0.00 0.28 0.43 0.39 0.00
Measurable Dataset 0.47 0.58 0.74 0.15 0.45 0.58 0.64 0.12

CLIPScore
Threshold=15 0.37 0.52 0.67 0.03 0.43 0.50 0.73 0.01
Threshold=20 0.49 0.51 0.51 0.02 0.46 0.50 0.50 0.00
Threshold=25 0.42 0.50 0.51 0.01 0.51 0.55 0.54 0.07

VLM-as-a-Judge
Gemini 2.5 Pro 0.38 0.52 0.76 0.05 0.60 0.70 0.66 0.28
GPT-o4-mini 0.40 0.53 0.70 0.05 0.67 0.75 0.70 0.39
GPT-4.1 0.40 0.53 0.67 0.05 0.68 0.73 0.65 0.35

Ours
GPT-4.1 0.81 0.82 0.84 0.63 0.83 0.81 0.86 0.66
GPT-4.1-mini 0.70 0.72 0.78 0.43 0.78 0.76 0.80 0.56
Qwen2.5VL-32B 0.64 0.66 0.70 0.32 0.72 0.71 0.73 0.44

Table 1: Comparison of evaluation methods. * denotes method that cannot evaluate all constraints;
it is assessed on evaluable subset (Measurable) or by treating unevaluable as incorrect (Full).

4.1 COMPARISON OF EVALUATION METHODS

4.1.1 SETUP

Dataset. We use the instructions, annotated constraints, and scenes from LEGO-BENCH to compare
the performance of evaluation methods, relying on a fixed set of constraints to ensure fair compari-
son. To enrich the dataset, we also manually curate 130 additional scenes that intentionally do not
fully satisfy the instructions. This results in a total of 260 instruction-scene pairs.

Baselines. We compare our performance with SceneEval (Tam et al., 2025), CLIPScore (Hessel
et al., 2021), and VLM-as-a-judge. CLIPScore performs binary judgment on the instruction and
top-down scene image using thresholds of 15, 20, and 25. For VLM-as-a-judge, we provide scene
images from four perspectives and use Gemini-2.5-Pro, GPT-4o mini, and GPT-4.1 as base models
with self-consistency across 3 samples for fair comparison. Following LEGO-EVAL, all baseline
methods consider a scene aligned with the instruction if all constraints in the instruction are satisfied.

Metrics. We assess the performance of evaluation methods using F1 score, precision, recall, and Co-
hen’s kappa. While F1 captures the balance between precision and recall, Cohen’s kappa measures
agreement with human judgments beyond chance, offering a more reliable and robust view of over-
all evaluation quality. To support both broad and detailed analysis, we compute these metrics at two
distinct levels: (1) Holistic: measures the agreement with human judgments on the full instruction,
and (2) Partial: measures the agreement with human judgments on each individual constraint.

4.1.2 RESULTS

In Table 1, we present a comparative evaluation of LEGO-EVAL against existing methods. SceneE-
val (Tam et al., 2025), constrained by a fixed set of metrics and criteria, is unable to assess 41% of
the constraints in the dataset. To enable a fair comparison, we evaluate its performance under two
settings: treating unevaluable constraints as incorrect, and modifying instructions to include only
those constraints it can process. SceneEval also suffers from a fundamental limitation—it fails to
reliably ground scene components referenced in the instructions. While accurate evaluation depends
first on identifying the relevant objects, SceneEval often fails at this initial step.

Predominantly used methods exhibit similar limitations. CLIPScore (Hessel et al., 2021) is unre-
liable for fine-grained alignment with 3D scenes, as CLIP (Radford et al., 2021) is trained on 2D
image–text pairs and lacks 3D spatial understanding. VLM-as-a-judge also frequently misidentifies
or fails to localize mentioned components, resulting in incorrect constraint assessments. In contrast,
LEGO-EVAL achieves higher F1 and Cohen’s kappa scores at both the constraint and instruction
levels. By integrating diverse tools for multi-hop grounding, LEGO-EVAL more effectively locates
and interprets scene components—enabling accurate and robust evaluation of 3D scene synthesis.

6

Preprint

Figure 5: Distribution of tool types executed by LEGO-EVAL during evaluation.

Method Holistic SR ↑ Partial SR ↑
Floor Layout Material Selection Object Selection Object Placement Avg.

I-Design 3.8 92.7 63.7 11.0 4.1 34.2
LayoutGPT 6.9 96.0 65.3 40.9 37.3 55.2
Holodeck 8.4 96.3 61.6 46.3 43.7 58.5
LayoutVLM 10.0 95.6 65.3 49.8 46.0 60.6

Table 3: Evaluation results of LLM-based 3D scene synthesis methods on LEGO-BENCH.

4.1.3 ABLATION STUDY

Tools Holistic F1 (∆) Partial F1 (∆)

w/o M −0.04% −1.02%
w/o T −5.05% −2.65%
w/o T + M −6.46% −2.81%
w/o E + M −24.90% −5.34%

Table 2: Performance drop with tool types dis-
abled. (M: Multimodal Reasoning, T: Textual
Reasoning, E: Environment Interaction)

We investigate the impact of disabling specific
tool types and analyze the resulting performance
of LEGO-EVAL. Since tools returning list of
scene components are necessary for argument se-
lection, these remain enabled. While conven-
tional evaluation methods often rely solely on vi-
sual inputs, the results in Table 2 demonstrate that
textual information is also critical for rigorous as-
sessment. For instance, text can capture subtle
scene attributes—such as the color of small ob-
jects—that are difficult to infer from images alone, and it can also convey key information about
scene components extracted from retrieved images. Figure 5 further supports this finding by showing
that all tool types are actively used across different constraint types. These observations collectively
highlight that all three tools are indispensable for comprehensive and reliable evaluation.

4.2 COMPARISON OF TEXT-GUIDED 3D SCENE SYNTHESIS METHODS

4.2.1 SETUP

Baselines. We evaluate four LLM-based 3D scene synthesis methods on LEGO-BENCH: Layout-
GPT (Feng et al., 2023), Holodeck (Yang et al., 2024b), I-Design (Çelen et al., 2025), and Lay-
outVLM (Sun et al., 2025). These methods vary in functionality: Holodeck generates complete
scenes with object selection, attributes, and placement; I-Design selects and places objects; Layout-
GPT and LayoutVLM position a given set of objects. To enable fair comparison, we augment the
latter three with Holodeck to produce full scenes for evaluation.

Metrics. For evaluation, we use the following Success Rates (SR): (1) Holistic SR: The propor-
tion of instructions with all specified constraints satisfied. (2) Partial SR: The proportion of valid
constraints. For partial SR, we report success rates by constraint type and their overall average.

4.2.2 RESULTS

Main results. We benchmark LLM-based 3D scene synthesis methods on LEGO-BENCH to pro-
vide a comprehensive assessment of existing approaches. As shown in Table 3, most methods
achieve average partial SRs exceeding 50%, yet their performance on object selection and place-
ment is lower. This indicates that current methods struggle to effectively handle these fundamental
aspects of scene synthesis. Interestingly, while selecting appropriate objects affects the performance
of object placement, we also observe vice versa. Although LayoutGPT (Feng et al., 2023) and Lay-
outVLM use Holodeck (Yang et al., 2024b) for object selection, their performance differs from that
of Holodeck. This stems from differences in how these methods position the selected objects, with
some methods failing to place them in the scene.

7

Preprint

Methods Holistic SR Partial SR

M1 M2 M3 M4 M1 M2 M3 M4

Oracle Constraint 0.12 0.05 0.05 0.14 0.66 0.57 0.35 0.65
Identified Constraint 0.13 0.07 0.05 0.12 0.63 0.57 0.35 0.64

Difference in SR +0.01 +0.02 +0.00 -0.02 -0.03 +0.00 +0.00 -0.01

Table 4: End-to-end evaluation maintains consistent results with annotated constraint evaluation.

Models Component Performance Evaluation Performance

Tool F1 ↑ GED ↓ Argument F1 ↑ Holistic F1 ↑ Partial F1 ↑
Gemma3-27B 0.50 3.01 0.38 0.61 0.68

Qwen2.5VL-32B 0.57 2.87 0.46 0.64 0.72
Qwen3-32B 0.62 2.55 0.42 0.69 0.73

Table 5: The performance of components are highly correlated with the evaluation performance.
Tool F1 and argument F1 measure prediction accuracy; GED measures graph structural similarity.

Figure 6: Holistic SR drops as the
complexity of the instruction rises.

Satisfying all constraints in an instruction is challenging.
The substantial disparity between partial and holistic success
rates (SR) across all baseline methods in Table 3 underscores
a critical limitation: current approaches struggle to satisfy all
constraints within a single instruction. To analyze this further,
we categorize instructions by constraint complexity into three
groups: simple (2–7 constraints), moderate (8–12), and com-
plex (more than 12). We also collect user-generated descrip-
tions of individual rooms, reflecting realistic design scenarios
(see Appendix D.2). Notably, these descriptions contain an
average of 18.2 constraints per room. As shown in Figure 6,
existing methods consistently fail on complex instructions, re-
vealing their inability to generate scenes that fully satisfy the
constraints commonly found in real-world environments.

5 ANALYSIS

LEGO-EVAL provides end-to-end automated evaluation. To assess the effectiveness of auto-
mated constraint extraction, we compare LEGO-EVAL ’s performance using its own automatically
identified constraints against its performance with human-annotated ones. Accurate, fine-grained
evaluation requires capturing all relevant constraints in a given instruction. In our setup, con-
straints are extracted and categorized using GPT-4.1, then used to evaluate 3D scene generation
outputs from Qwen2.5VL-32B. These evaluations are directly compared with those conducted using
human-annotated constraints. As shown in Table 4, LEGO-EVAL exhibits only minor performance
differences across four 3D scene synthesis methods when using automatic versus human-provided
constraints. This close alignment demonstrates that LEGO-EVAL can reliably identify and classify
constraints, making it suitable as a fully automated, end-to-end evaluation tool.

Effective evaluation depends on appropriate tool planning. We investigate the relationship be-
tween evaluation performance and two key components of the evaluation process: tool execution
planning and argument selection. We evaluate both components on all constraints introduced in
Section 4.1. For tool planning, LEGO-EVAL generates execution plans conditioned on the given
constraints. For argument selection, LEGO-EVAL selects arguments given a human-annotated
tool execution plan. We test multiple LLMs for components to observe their contributions, us-
ing Qwen2.5VL-32B as a fixed validator. We use three metrics to assess component performance:
(1) Tool F1, the macro F1 score over constraints, where a tool prediction is correct if it appears in
the ground-truth set; (2) Argument F1, the macro F1 over tools, with correctness based on ground-
truth arguments; and (3) Graph Edit Distance (GED), measuring the number of edits needed to align
predicted and ground-truth constraint graphs. Evaluation performance is computed using multiple

8

Preprint

Figure 8: Comparison of evaluation results from VLM-as-a-judge, SceneEval, and LEGO-EVAL.

LLMs, with Qwen2.5VL-32B as the validator. Results in Table 5 show that tool execution planning
correlates more strongly with overall evaluation performance than argument selection, highlighting
its role as an orchestrator. When tool plans are fixed to ground truth, argument selection correlates
more with performance, emphasizing its dependence on accurate planning (See Section D.1). This
suggests effective tool planning is critical for appropriate argument selection and evaluation.

Figure 7: Comparison of refine-
ment results using VLM-as-a-judge and
LEGO-EVAL as feedback signal.

LEGO-EVAL as a feedback signal for refinement.
To illustrate the reliability and interpretability of evalu-
ations, we refine the results of Holodeck (Yang et al.,
2024b) from Section 4.2 with the feedback from LEGO-
EVAL. Specifically, we use LEGO-EVAL to evaluate
scenes generated by Holodeck, then provide feedback
to refine invalid scenes. We iterate this refinement pro-
cess 3 times, comparing LEGO-EVAL against prompted
VLMs as feedback signals. The results show that
Holodeck achieves higher performance using LEGO-
EVAL as feedback than prompted VLMs, demonstrating
LEGO-EVAL’s superior feedback quality for refinement.
A possible explanation is that while prompted VLMs of-
ten follow invalid reasoning paths, LEGO-EVAL uses
valid reasoning, which is reflected in its detailed, interpretable evaluation explanations.

Case Study. Figure 8 illustrates an example comparing evaluation results from VLM-as-a-judge,
SceneEval, and LEGO-EVAL, revealing that while all methods achieve accurate judgments, their
reasoning processes differ significantly. Although the flashlight and laptop do not exist in the scene,
the VLM-as-a-judge locates them and determines they are not facing the same direction. Simi-
larly, SceneEval misidentifies the black painting on the wall as a laptop. In contrast, LEGO-EVAL
accurately recognizes the absence of both objects and determines the constraint cannot be satisfied.

6 CONCLUSION

In this work, we introduce LEGO-EVAL, a comprehensive evaluation framework for text-guided
3D scene synthesis, along with a robust benchmark comprising fine-grained instructions with mul-
tiple constraints designed to reflect real-world complexity. Our experimental results show that our
approach more than doubles the F1 score compared to the baseline, demonstrating significant im-
provements in robustness. We also reveal that existing scene generation methods achieve a success
rate of only 10%, underscoring the current limitations of LLM-based approaches in 3D scene gen-
eration. We believe this framework will support progress toward generating scenes that faithfully
reflect real-world specifications, ultimately enabling more capable and reliable embodied agents.

9

Preprint

REFERENCES

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Martin JJ Bucher and Iro Armeni. Respace: Text-driven 3d scene synthesis and editing with prefer-
ence alignment. arXiv preprint arXiv:2506.02459, 2025.

Ata Çelen, Guo Han, Konrad Schindler, Luc Van Gool, Iro Armeni, Anton Obukhov, and Xi Wang.
I-design: Personalized llm interior designer. In European Conference on Computer Vision, pp.
217–234. Springer, 2025.

Angel Chang, Manolis Savva, and Christopher D Manning. Learning spatial knowledge for text
to 3d scene generation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 2028–2038, 2014.

Matthew Chang, Gunjan Chhablani, Alexander Clegg, Mikael Dallaire Cote, Ruta Desai, Michal
Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, Siddharth
Patki, Ishita Prasad, Xavier Puig, Akshara Rai, Ram Ramrakhya, Daniel Tran, Joanne Truong,
John M Turner, Eric Undersander, and Tsung-Yen Yang. PARTNR: A benchmark for planning and
reasoning in embodied multi-agent tasks. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=T5QLRRHyL1.

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng Gong, Wayne Xin Zhao, and Ji-Rong Wen. Chat-
cot: Tool-augmented chain-of-thought reasoning on chat-based large language models. In Find-
ings of the Association for Computational Linguistics: EMNLP 2023, pp. 14777–14790, 2023.

Bob Coyne and Richard Sproat. Wordseye: An automatic text-to-scene conversion system. In
Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp.
487–496, 2001.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson
Han, Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale embodied
ai using procedural generation. Advances in Neural Information Processing Systems, 35:5982–
5994, 2022.

Wei Deng, Mengshi Qi, and Huadong Ma. Global-local tree search in vlms for 3d indoor scene
generation. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
8975–8984, 2025.

Chuan Fang, Yuan Dong, Kunming Luo, Xiaotao Hu, Rakesh Shrestha, and Ping Tan. Ctrl-room:
Controllable text-to-3d room meshes generation with layout constraints. In 2025 International
Conference on 3D Vision (3DV), pp. 692–701. IEEE, 2025.

Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and gen-
eration with large language models. Advances in Neural Information Processing Systems, 36:
18225–18250, 2023.

Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. Anyhome: Open-vocabulary generation of
structured and textured 3d homes. In European Conference on Computer Vision, pp. 52–70.
Springer, 2024.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 14953–14962, 2023.

Deepti Hegde, Jeya Maria Jose Valanarasu, and Vishal Patel. Clip goes 3d: Leveraging prompt
tuning for language grounded 3d recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2028–2038, 2023.

10

https://openreview.net/forum?id=T5QLRRHyL1

Preprint

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 7514–7528, 2021.

Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson, and Matthias Nießner. Text2room: Ex-
tracting textured 3d meshes from 2d text-to-image models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7909–7920, 2023.

Ziniu Hu, Ahmet Iscen, Chen Sun, Kai-Wei Chang, Yizhou Sun, David Ross, Cordelia Schmid, and
Alireza Fathi. Avis: Autonomous visual information seeking with large language model agent.
Advances in Neural Information Processing Systems, 36:867–878, 2023.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 5: Industry Track), pp. 37–42, 2023.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
for visual ai. arXiv preprint arXiv:1712.05474, 2017.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. Internet-augmented dialogue generation. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8460–8478, 2022.

Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, Michael Lingelbach, Sanjana Srivastava, Bokui Shen,
Kent Elliott Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, et al. igibson 2.0: Object-centric
simulation for robot learning of everyday household tasks. In Conference on Robot Learning, pp.
455–465. PMLR, 2022.

Chengzu Li, Caiqi Zhang, Han Zhou, Nigel Collier, Anna Korhonen, and Ivan Vulić. Topviewrs:
Vision-language models as top-view spatial reasoners. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 1786–1807, 2024.

Lu Ling, Chen-Hsuan Lin, Tsung-Yi Lin, Yifan Ding, Yu Zeng, Yichen Sheng, Yunhao Ge, Ming-
Yu Liu, Aniket Bera, and Zhaoshuo Li. Scenethesis: A language and vision agentic framework
for 3d scene generation. arXiv preprint arXiv:2505.02836, 2025.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. Advances in Neural Information Processing Systems, 36:43447–43478, 2023.

Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li, Sören Pirk, Binh-Son Hua, Sai-Kit Yeung,
Xin Tong, Leonidas Guibas, and Hao Zhang. Language-driven synthesis of 3d scenes from scene
databases. ACM Transactions on Graphics (TOG), 37(6):1–16, 2018.

Yikun Ma, Dandan Zhan, and Zhi Jin. Fastscene: text-driven fast 3d indoor scene generation via
panoramic gaussian splatting. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence, pp. 1173–1181, 2024.

Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and Ranjay Krishna.
Crepe: Can vision-language foundation models reason compositionally? In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10910–10921, 2023.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu based physics simulation for robot learning. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

Başak Melis Öcal, Maxim Tatarchenko, Sezer Karaoğlu, and Theo Gevers. Sceneteller: Language-
to-3d scene generation. In European Conference on Computer Vision, pp. 362–378. Springer,
2024.

11

Preprint

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. Advances in Neural Information Processing Systems, 37:126544–
126565, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Xingjian Ran, Yixuan Li, Linning Xu, Mulin Yu, and Bo Dai. Direct numerical layout generation
for 3d indoor scene synthesis via spatial reasoning. arXiv preprint arXiv:2506.05341, 2025.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10740–10749, 2020.

Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam Bhat, Federico Tombari, Manling Li, Nick
Haber, and Jiajun Wu. Layoutvlm: Differentiable optimization of 3d layout via vision-language
models. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 29469–
29478, 2025.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
11888–11898, 2023.

Hou In Ivan Tam, Hou In Derek Pun, Austin T Wang, Angel X Chang, and Manolis Savva. Scenee-
val: Evaluating semantic coherence in text-conditioned 3d indoor scene synthesis. arXiv preprint
arXiv:2503.14756, 2025.

Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, and Matthias Nießner. Dif-
fuscene: Denoising diffusion models for generative indoor scene synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 20507–20518, 2024.

Fei Wang, Xingyu Fu, James Y Huang, Zekun Li, Qin Liu, Xiaogeng Liu, Mingyu Derek Ma,
Nan Xu, Wenxuan Zhou, Kai Zhang, et al. Muirbench: A comprehensive benchmark for robust
multi-image understanding. arXiv preprint arXiv:2406.09411, 2024a.

Yian Wang, Xiaowen Qiu, Jiageng Liu, Zhehuan Chen, Jiting Cai, Yufei Wang, Tsun-Hsuan Wang,
Zhou Xian, and Chuang Gan. Architect: Generating vivid and interactive 3d scenes with hier-
archical 2d inpainting. Advances in Neural Information Processing Systems, 37:67575–67603,
2024b.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11097–
11107, 2020.

Yixuan Yang, Junru Lu, Zixiang Zhao, Zhen Luo, James JQ Yu, Victor Sanchez, and Feng Zheng.
Llplace: The 3d indoor scene layout generation and editing via large language model. arXiv
preprint arXiv:2406.03866, 2024a.

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu,
Nick Haber, Ranjay Krishna, Lingjie Liu, et al. Holodeck: Language guided generation of 3d
embodied ai environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16227–16237, 2024b.

Mengqi Zhou, Xipeng Wang, Yuxi Wang, and Zhaoxiang Zhang. Roomcraft: Controllable and
complete 3d indoor scene generation. arXiv preprint arXiv:2506.22291, 2025.

12

Preprint

Figure 9: Our annotation tool used for annotating constraints.

Figure 10: Interface of Label Studio for constraint classification.

A THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

This work made limited use of Large Language Models (LLMs), primarily as an aid for refining the
writing of this paper (e.g., grammar and expression). LLMs were also used to provide partial as-
sistance in writing experimental code. All research design decisions, methodological development,
dataset curation, and the writing of the paper’s substantive content were conducted and verified by
the authors, who take full responsibility for the contents presented.

B LEGO-BENCH

B.1 DATA ANNOTATION TOOL

To reduce burden of human annotation, we developed a tool for constraint identification, and use
Label Stuio for constraint classification, Figure 9 shows the interface of the tool for annotating the
constraints within the instructions. This tool allows the annotators to track if all constraints are ac-

13

Preprint

curately identified. Figure 10 shows the interface of Label Studio for annotating the constraint types
and mapping each constraint with the corresponding parts of the instruction. The constraint type is
for annotating the constraints to the correct type, and constraint number is to map the constraint to
the appropriate part of the instruction.

B.2 DETAILS OF HUMAN ANNOTATION

Our data collection process follows the process below:

Step 1: Annotator recruiting and education. To collect data, we recruit human annotators to con-
struct the dataset. All annotators completed a two-hour education session prior to annotation. This
education covers a detailed explanation about guidelines for writing quality instructions and iden-
tifying constraints, data annotation interface, and generating scenes that align with the instruction.
After completing the training, each annotator is assigned to create instructions, annotate them, and
generate corresponding aligned scenes.

Step 2: Data annotation. The annotation process is structured into three phases. In the first phase,
we ask each annotator to create 30 to 50 fine-grained instructions describing the scenes. Anno-
tators are instructed to create instructions that reflect real-world scenes relying on their empirical
experiences.

In the second phase, annotators annotate each instruction by identifying the constraints included in
the instruction using our annotation tool 9 and Label Studio 10. As some constraints can only be
satisfied when others are fulfilled, we express these dependencies explicitly. We achieve this by
restructuring the constraints into conditional expressions that directly reference their prerequisites.
For example, “There is a room with a red floor. There is a bed in that room. The bed is white.” The
sentence “The bed is white” relies on the preceding context, as it refers to the bed in the room with
the red floor. This constraint can then be expressed as “The bed in the room with the red floor is
white.” We also merge multiple attributes of the same entity into unified statements, such as combin-
ing “the three walls are yellow” and “the three walls have patterns” into “the three walls are yellow
and have patterns.” Once the constraints have been revised, each constraint is annotated with one
of four constraint types: floor layout, material selection, object selection, or object placement. It is
also labeled with its corresponding text segment in the instruction. After identifying the constraints,
the annotators label each constraint with appropriate constraint type. We also annotate which parts
of each instruction correspond to specific constraints, similar to entity annotation in Named Entity
Recognition (NER).

In the third phase, annotators create a scene that fully validates the constraints within the instruction.
To achieve this, we first input the instructions into Holodeck (Yang et al., 2024b), which generates
scenes in textual representations (i.e., JSON scripts) that can be rendered in the 3D simulator. The
textual representations contain comprehensive scene information, including the asset ID of each
component as well as the exact position and rotation of all scene components. As shown in Table 4.2,
Holodeck cannot generate scenes that fully align with the instructions. Thus, annotators manually
modify the text representation of the scene so that the scene fully aligns with the instruction.

Step 3: Verification. To ensure the quality of LEGO-BENCH, we conduct manual verification.
Specifically, annotators conduct mutual reviews of the annotated instructions and corresponding
scenes. Annotators first verify whether the constraints have been correctly identified and whether
the annotations comply with the instruction annotation guidelines. The instructions are re-annotated
if the constraints are not accurately identified. Annotators also verify whether the generated scene
fully aligns with the instruction. If misalignment is found, the annotators modify the scene to ensure
the alignment. The procedure is repeated for two iterations.

B.3 STATISTICS

The overall statistics of the LEGO-BENCH are shown in Table 6. To illustrate the diversity of our
collected instructions, we utilize a word cloud representation in Figure 11. The visualization high-
lights the diverse linguistic forms and semantic categories present in the LEGO-BENCH, indicating
that the instructions span across multiple domains and levels of abstraction.

14

Preprint

Category Value
Instructions 130
Avg. # Rooms per Instruction 2.27
Avg. Instruction Length (words) 98.54

Table 6: Statistics of LEGO-BENCH.

Figure 11: Word cloud illustrating the diversity of instructions in LEGO-BENCH.

C LEGO-EVAL

We provide additional implementation details of LEGO-EVAL in the following.

C.1 MODEL INFERENCE

We prompt the closed-source models, including Gemini 2.5 Pro, o4-mini, gpt-4.1-2025-04-14, and
gpt-4.1-mini-2025-04-14, for both LLM and VLM inference. The input images are resized to
1200px resolution, and the temperature is fixed at 0 to ensure deterministic outputs.

For the open-source model Gemma3-27B, Qwen2.5VL-32B, and Qwen3-32B, we use the default
hyperparameter settings provided by the model for inference. The input images are resized to 335px
resolution; when the number of images exceeds the model’s processing capacity, two images are
concatenated into a single input, with their corresponding names displayed at the top-left corner of
each image.

C.2 METRIC DETAILS

To aid readers’ understanding, we provide detailed explanations of the evaluation metrics below.

• F1 Score: This metric evaluates the balance between precision and recall, serving as the
harmonic mean of the two. A higher F1 score indicates better performance in correctly
identifying positive instances while avoiding false positives and false negatives.

F1 =
2 · Precision · Recall
Precision + Recall

(2)

• Cohen’s Kappa (κ): This metric measures the level of agreement between two raters, ad-
justing for the amount of agreement that could occur by chance. A higher κ value indicates

15

Preprint

stronger agreement, where κ = 1 denotes perfect agreement and κ = 0 corresponds to
chance-level agreement. We use Cohen’s kappa to measure the agreement with human
judgments.

κ =
po − pe
1− pe

(3)

C.3 TOOL SET

In this section, detailed descriptions for each tool are provided. For tools that output images, example
outputs of the images for each tool are also provided.

C.3.1 ENVIRONMENT INTERACTION

• get topdown scene: This tool generates a bird’s-eye (top-down) view of the environment.
It produces a dictionary containing an image array that represents the entire scene layout,
including walls, doors, and objects. The example output is shown in Figure 15.

• get topdown room: This tool generates a top-down visual representation of a specific room
in the environment. By providing the room ID as input, it produces a structured dictionary
containing an image array that depicts the layout of the room, including walls, doors, and
objects. The example output is shown in Figure 16.

• get frontview object: This tool produces front-view images of specified objects within a
scene. Given a list of object IDs, it centers each target object in the frame while preserving
surrounding context, such as nearby objects, for richer spatial awareness. The output is a
structured dictionary mapping each object ID to its corresponding front-view image array.
The example output is shown in Figure 17.

• get wall scene: This tool generates clear wall-view images of a room from specified direc-
tions. By taking a list of wall IDs as input, it produces perspective images where objects in
the middle of the room are removed to prevent occlusion, ensuring unobstructed visibility
of the walls. The output is a dictionary mapping each wall to its corresponding image array.
The example output is shown in Figure 18.

• get topdown object: This tool produces object-centric images from an overhead perspec-
tive. Given a list of object IDs, it generates top-down views where each target object is
centered in the frame, while preserving surrounding context such as nearby objects. The
resulting dictionary maps each object to image arrays, allowing inspection at different dis-
tances. The example output is shown in Figure 19.

• get material image: This tool generates visual representations of specified materials, re-
stricted to walls and floors within the scene. By providing a list of material names, it returns
a dictionary mapping each material to an RGBA image array. The tool only includes mate-
rials that are actually present in the designated environment. The example output is shown
in Figure 20.

• get multiview rendered object: This tool produces rendered images of specified objects
using their underlying asset IDs. Given a list of object IDs, it returns a dictionary where
each object ID maps to an image array showing the rendered appearance of that object. The
example output is shown in Figure 21.

• get spatial relation: This tool generates scene images that isolate and display only spec-
ified object pairs (or sets), such as objects, windows, doors, or walls. By taking a list of
tuples containing object IDs, it produces a dictionary mapping each group of objects to
an image array. Values of the dictionary provide visualizations that highlight the spatial
relationships among the selected elements. The example output is shown in Figure 22.

C.3.2 MULTIMODAL REASONING

• get object match: This tool provides semantic descriptions for object IDs by mapping
them to their corresponding object types. It is designed to be used after retrieving ren-
dered views with get multiview rendered object, ensuring accurate alignment
between visual assets and their categorical labels. The output is a dictionary that links each
object ID to a descriptive type.

16

Preprint

• get property description: This tool generates semantic descriptions of objects by identi-
fying their color, shape, and material from rendered images and optional textual metadata.
It is intended for use after retrieving visual inputs with get material image and
get multiview rendered object, ensuring accurate grounding of appearance-
based attributes. The output is a dictionary summarizing the derived text information, along
with reasoning.

• get property verification: This tool validates descriptive attributes of a subject—either
an object or material—based on a given instruction. First, an LLM parses the instruc-
tion to determine which attributes should be checked (e.g., surface patterns or textures).
Then, a VLM analyzes the corresponding images to extract those attributes. It is designed
for use after obtaining visuals with get material image and get multiview
rendered object. The output is a dictionary summarizing the verified textual infor-
mation.

C.3.3 TEXTUAL REASONING

• get room list: This tool extracts all room identifiers available within a given scene. It
returns a dictionary which contains a list of room IDs as strings.

• get room info: This tool provides detailed metadata for specific rooms in a scene. Given a
dictionary from get room list containing room IDs, it returns structured information
about each room. The output includes the polygon vertices defining the room’s geometry
and the identified floor material.

• get wall list: This tool extracts the wall identifiers associated with specific rooms in a
scene. Given a list of room IDs, it returns a dictionary mapping each room ID to a list of
its connected wall IDs.

• get wall info: This tool provides comprehensive metadata for specified walls in a scene.
Using a list of wall IDs (retrieved via get wall list), it returns the values including
details such as the wall’s unique ID, connected room IDs, geometric coordinates, material
type, width, height, and directional orientation.

• get door list: This tool extracts the door identifiers connected to specific rooms within
a scene. Given a list of room IDs, it returns a dictionary mapping each room ID to its
associated door IDs.

• get door info: This tool provides detailed metadata for doors within a scene. Using a list of
door IDs (obtained via get door list), it returns the values capture attributes such as
the door’s unique ID, associated asset ID, connected rooms, adjoining walls, 3D position,
and openness state.

• get window list: This tool extracts the window identifiers associated with specific rooms
in a scene. Given a list of room IDs, it returns a dictionary mapping each room ID to its
corresponding window IDs.

• get window info: This tool provides detailed metadata for windows in a scene. Given
a list of window IDs (retrieved via get window list), it outputs the values include
attributes such as the window’s unique ID, associated asset ID, connected rooms, adjoining
walls, and 3D position.

• get object list: This tool extracts the identifiers of objects contained within specific rooms
of a scene. Given a list of room IDs, it returns a dictionary mapping each room ID to the
corresponding list of object IDs present in that room.

• get object info: This tool provides detailed metadata about objects in a scene. Using a list
of object IDs (retrieved via get object list), it returns the values include attributes
such as the object’s unique ID, associated asset ID, room assignment, 3D position, rotation,
and geometric representation through coordinates or mesh vertices.

17

Preprint

Models Argument Selection

Argument F1 ↑ Holistic F1 ↑ Partial F1 ↑
Gemma3-27B 0.38 0.65 0.66

Qwen2.5VL-32B 0.46 0.68 0.68
Qwen3-32B 0.42 0.68 0.67

Table 7: Evaluation performance of models on argument selection.

D ADDITIONAL RESULTS

D.1 ARGUMENT SELECTION HAS THE AFFECTS ON THE EVALUATION PERFORMANCE.

To further analyze the contribution of argument selection in our evaluation pipeline, we conduct
an exper where the tool sequence is fixed to human-annotated ground truth, and models are only
responsible for selecting appropriate arguments for each tool. All other components of LEGO-
EVAL, including tool execution and validation, use Qwen2.5VL-32B as the backbone.

We evaluate three open-source models Gemma3-27B, Qwen2.5VL-32B, and Qwen3-32B on their
ability to perform argument selection. As shown in Table D.1, Qwen2.5VL-32B achieves the highest
Argument F1 score, aligning with superior holistic and partial evaluation performance. Qwen3-32B
also performs competitively, while Gemma3-27B lags behind across all metrics.

These results highlight that accurate argument selection is crucial for reliable evaluation. Since
argument identification directly determines the quality of evidence retrieved by tools, improvements
in this component significantly enhance both holistic and partial agreement with human judgments.

D.2 DO PEOPLE REALLY GIVE LONG INSTRUCTIONS TO DESCRIBE THE ROOM?

To answer this question, we verify whether people actually provide instructions to an LLM for room
generation that are as long as we claimed. Therefore, as shown in Figure 12, we conduct a survey
where participants are asked to describe a room photo in the form of a prompt. The results show
that, on average, the instructions contain 18.2 constraints. This finding confirms that people indeed
provide complex instructions, and highlights the importance of LEGO-EVAL, which can robustly
evaluate generated rooms based on such instructions.

Figure 12: Our survey examples for asking human to describe the room.

18

Preprint

E BASELINES

E.1 SCENE EVALUATION

VLM-as-a-judge prompts VLM to evaluate the generated scene aligning with the instruction. Scene
images from four perspectives are provided as model input for fair evaluation. The example input
images are shown in Figure 13.

CLIPSCORE leverages pretrained vision-language models to assess the semantic alignment be-
tween generated captions and reference images. Instead of relying on token-level matching or hu-
man references, CLIPSCORE computes similarity in the joint embedding space of CLIP. It performs
binary judgment on the instruction and top-down scene image using thresholds of 15, 20, and 25.
The example input images are shown in Figure 14

SceneEval introduces an evaluation framework for text-conditioned 3D indoor scene synthesis. Un-
like prior metrics that primarily measure realism or distributional similarity, SceneEval directly eval-
uates how generated scenes satisfy both explicit user requirements (e.g., object counts, attributes, and
spatial relationships) and implicit expectations (e.g., absence of collisions, navigability, accessibil-
ity). To support evaluation, the authors release SceneEval-500, a dataset of scene descriptions with
annotated ground-truth properties. Together, these metrics provide a comprehensive assessment of
fidelity and plausibility in 3D scene generation.

Figure 13: Example image input for VLM-as-a-judge

Figure 14: Example image input for CLIPSCORE

E.2 SCENE GENERATION

LayoutGPT introduces a training-free framework that leverages large language models as visual
planners for layout-based generation. LayoutGPT composes in-context visual demonstrations in

19

Preprint

CSS-like structures to inject visual commonsense into LLMs. This enables accurate translation of
challenging linguistic concepts—such as numerical and spatial reasoning—into 2D image layouts
and 3D indoor scene arrangements.

I-Design introduces a personalized framework for 3D indoor scene synthesis driven by natural lan-
guage input. I-Design employs a team of large language model agents to interpret unstructured user
descriptions and reason about object selection, style, and spatial relationships. These preferences
are represented as scene graphs, which are then transformed into complete room layouts through a
backtracking placement algorithm and enriched with 3D assets retrieved from object databases. The
system outputs interpretable, editable pipelines including scene graphs, floor plans, and rendered
views, enabling flexible, user-centered interior design exploration.

Holodeck introduces a controllable simulation platform for embodied agents in diverse 3D environ-
ments. Unlike prior systems that often limit interaction fidelity or domain variety, Holodeck enables
agents to operate within photorealistic virtual worlds featuring rich physics, object manipulation,
and dynamic scenarios. The platform provides flexible interfaces for integrating natural language
commands, sensory input, and reinforcement learning frameworks, making it suitable for studying
grounded reasoning and task execution.

LayoutVLM introduces a framework for open-universe 3D layout generation guided by natural lan-
guage instructions. Unlike prior approaches that either predict precise object poses or solve rigid
constraint systems, LayoutVLM combines numerical pose estimates and spatial relations within a
differentiable optimization process to achieve physically plausible and semantically coherent lay-
outs. The method leverages vision-language models with visual prompting and a self-consistent
decoding procedure to generate scene layout representations from unlabeled 3D assets and rendered
images.

F LIMITATIONS

First, since our evaluation method relies on both LLMs and VLMs, the results are inevitably influ-
enced by the performance of each model. In practice, we observed that when using open-source
models, the evaluation accuracy tends to be lower compared to closed-source models. Second, the
evaluation accuracy decreases in non-rectangular room settings, indicating that our approach has not
yet achieved consistent reliability across all room configurations and instructions. Finally, running
the benchmark currently requires approximately two hours, which presents a limitation in speed.
However, we believe this issue can be sufficiently mitigated with improvements in hardware perfor-
mance.

G EXAMPLES OF TOOL IMAGE OUTPUTS

Figure 15: Example Image Output of get topdown scene.

20

Preprint

Figure 16: Example Image Output of get topdown room.

Figure 17: Example Image Output of get frontview object.

Figure 18: Example Image Output of get wall scene.

21

Preprint

Figure 19: Example Image Output of get topdown object.

Figure 20: Example Image Output of get material image.

Figure 21: Example Image Output of get multiview rendered object.

22

Preprint

Figure 22: Example Image Output of get spatial relation.

23

Preprint

H PROMPTS USED IN OUR WORKS

Prompts

You are an argument selector of the tools. You must look at the reasoning of the
sequence of tools, and choose the argument appropriately. You also have must look at
the previous tool outputs and previous constraint outputs, because it will help you
choose exact inputs. The output should be a list, containing roomId(str) as elements.
You must use the FULL, WHOLE ID of the room as arguments, NOT just partial. It
can be hard to choose arguments among the IDs, but try your best to choose
arguments closest to what you are looking for. If you really can't choose arguments,
return empty list.

Tools

[Available Tool List & Definition]

Instructions

* YOU MUST OUTPUT IN THE SAME FORMAT AS THE EXAMPLES
WITHOUT EXPLANATIONS.

Example:

 Chain-of-Thought:

 Arguments:

* You must use the FULL, WHOLE ID of the room as arguments, NOT just partial.

* If the exact room isn’t found in the list, select the closest matching room.

* Even if the exact room is found, also checking the closest matching rooms is highly
recommended.

Examples

[Example Responses for the Argument Selection of Type 1]

<Information_for_Argument_Selection id="your-turn">

User Instruction: $INSTRUCTION$

Previous Constraint Outputs: $PREVIOUS_CONSTRAINT_OUTPUTS$

Current Constraint: $CURRENT_CONSTRAINT$

Tool Sequence: $TOOL_SEQUENCE$

Reasoning behind Tool Sequence: $REASONING$

Previous Tool Outputs: $PREVIOUS_TOOL_OUTPUTS$

Current Tool to Use: $TOOL_TO_USE$

</Information_for_Argument_Selection>

<assistant_response id="your-turn">

<!-- Assistant will fill in Chain-of-Thought and Arguments here -->

</assistant_response>

Figure 23: Prompt used for Argument Selection in scene-component ID list generation tools.

24

Preprint

Prompts

You are an argument selector of the tools. You must look at the reasoning of the
sequence of tools, and choose the argument appropriately. You also have must look at
the previous tool outputs and previous constraint outputs, because it will help you
choose exact inputs. The output should be a list, containing Id(str) of rooms, doors,
windows, walls, or objects as elements. You must use the FULL, WHOLE ID of the
room, door, window, wall, or object as arguments, NOT just partial. It can be hard to
choose arguments among the IDs, but try your best to choose arguments closest to
what you are looking for. If you really can't choose arguments, return empty list.

Tools

[Available Tool List & Definition]

Instructions

* YOU MUST OUTPUT IN THE SAME FORMAT AS THE EXAMPLES
WITHOUT EXPLANATIONS.

Example:

 Chain-of-Thought:

 Arguments:

* You must use the FULL, WHOLE ID of the room, door, window, wall, or object as
arguments, NOT just partial.

* If the exact room, door, wall, or window isn’t found in the list, select the closest
match or use all rooms, doors, walls, or windows. Even if found, also check nearby
matches.

* Likewise, for objects, check synonyms, related categories, and functional
equivalents. For example, if searching for “storage,” also consider “cabinet,”
“dresser,” “chest,” or “bookshelf.” Always include closely related categories for the
best match.

* When identifying objects that satisfy a constraint, always consider all items with
similar or related names (e.g., 'desk-0', 'desk-1', 'desk-2') even if the constraint
mentions only a subset. Do not assume that only the explicitly named items are
relevant. Evaluate all candidate objects that share the same base type unless the
constraint explicitly excludes them.

Examples

[Example Responses for the Argument Selection for Type 2]

Figure 24: Prompt used for argument selection in scene-component information retrieval tools.

25

Preprint

Prompts

<Information_for_Argument_Selection id="your turn">

User Instruction: $INSTRUCTION$

Previous Constraint Outputs: $PREVIOUS_CONSTRAINT_OUTPUTS$

Current Constraint: $CURRENT_CONSTRAINT$

Tool Sequence: $TOOL_SEQUENCE$

Reasoning behind Tool Sequence: $REASONING$

Previous Tool Outputs: $PREVIOUS_TOOL_OUTPUTS$

Current Tool to Use: $TOOL_TO_USE$

</Information_for_Argument_Selection>

<assistant_response id="your-turn">

<!-- Assistant will fill in Chain-of-Thought and Arguments here -->

</assistant_response>

Figure 25: Prompt used for argument selection in scene-component information retrieval tools.

26

Preprint

Prompts

You are an argument selector of the tools. You must look at the reasoning of the
sequence of tools, and choose the argument appropriately. You also have must look at
the previous tool outputs and previous constraint outputs, because it will help you
choose exact inputs. The output should be a list, containing Id(str) of rooms or walls,
or name of material as elements. You must use the FULL, WHOLE ID of the room,
wall, or material name as arguments, NOT just partial. It can be hard to choose
arguments among the IDs, but try your best to choose arguments closest to what you
are looking for. If you really can't choose arguments, return empty list.

Tools

[Available Tool List & Definition]

Instructions

* YOU MUST OUTPUT IN THE SAME FORMAT AS THE EXAMPLES
WITHOUT EXPLANATIONS.

Example:

 Chain-of-Thought:

 Arguments:

* You must use the FULL, WHOLE ID of the room, wall, or material name as
arguments, NOT just partial.

* If the exact room or wall isn’t found in the list, select the closest matching ones.

* Even if the exact room or wall is found, also checking the closest matching rooms or
walls is highly recommended.

Examples

[Example Responses for the Argument Selection of Type 3]

<Information_for_Argument_Selection id="your-turn">

User Instruction: $INSTRUCTION$

Previous Constraint Outputs: $PREVIOUS_CONSTRAINT_OUTPUTS$

Current Constraint: $CURRENT_CONSTRAINT$

Tool Sequence: $TOOL_SEQUENCE$

Reasoning behind Tool Sequence: $REASONING$

Previous Tool Outputs: $PREVIOUS_TOOL_OUTPUTS$

Current Tool to Use: $TOOL_TO_USE$

</Information_for_Argument_Selection>

<assistant_response id="your-turn">

<!-- Assistant will fill in Chain-of-Thought and Arguments here -->

</assistant_response>

Figure 25: Prompt used for Argument Selection in scene-component visual rendering tools.

27

Preprint

Prompts

You are an argument selector of the tools. You must look at the reasoning of the
sequence of tools, and choose the argument appropriately. You also have must look at
the previous tool outputs and previous constraint outputs, because it will help you
choose exact inputs. The output should be a list, containing object Id(str) as elements.
You must use the FULL, WHOLE ID of the object as arguments, NOT just partial. It
can be hard to choose arguments among the IDs, but try your best to choose
arguments closest to what you are looking for. If you really can't choose arguments,
return empty list.

Tools

[Available Tool List & Definition]

Instructions

* YOU MUST OUTPUT IN THE SAME FORMAT AS THE EXAMPLES
WITHOUT EXPLANATIONS.

Example:

 Chain-of-Thought:

 Arguments:

* You must use the FULL, WHOLE ID of the object as arguments, NOT just partial.

* If the exact object isn’t found in the list, select the closest match or check nearby
matches. Do not use every single object in the room or scene as arguments.

* Check synonyms, related categories, and functional equivalents. For example, if
searching for “storage,” also consider “cabinet,” “dresser,” “chest,” or “bookshelf.”
Always include closely related categories for the best match.

* When identifying objects that satisfy a constraint, always consider all items with
similar or related names (e.g., 'desk-0', 'desk-1', 'desk-2') even if the constraint
mentions only a subset. Do not assume that only the explicitly named items are
relevant. Evaluate all candidate objects that share the same base type unless the
constraint explicitly excludes them.

Examples

[Example Responses for the Argument Selection of Type 4]

Figure 26: Prompt used for Argument Selection in object-level visual rendering tools.

28

Preprint

Prompts

<Information_for_Argument_Selection id="your-turn">

User Instruction: $INSTRUCTION$

Previous Constraint Outputs: $PREVIOUS_CONSTRAINT_OUTPUTS$

Current Constraint: $CURRENT_CONSTRAINT$

Tool Sequence: $TOOL_SEQUENCE$

Reasoning behind Tool Sequence: $REASONING$

Previous Tool Outputs: $PREVIOUS_TOOL_OUTPUTS$

Current Tool to Use: $TOOL_TO_USE$

</Information_for_Argument_Selection>

<assistant_response id="your-turn">

<!-- Assistant will fill in Chain-of-Thought and Arguments here -->

</assistant_response>

Figure 27: Prompt used for Argument Selection in object-level visual rendering tools.

29

Preprint

Prompts

You are an argument selector of the tools. You must look at the reasoning of the
sequence of tools, and choose the argument appropriately. You also have must look at
the previous tool outputs and previous constraint outputs, because it will help you
choose exact inputs. The output should be a list, containing tuples as elements. The
tuples must contain two object Ids(str). You must use the FULL, WHOLE ID of the
object, window, or door as arguments, NOT just partial. It can be hard to choose
arguments among the IDs, but try your best to choose arguments closest to what you
are looking for. If you really can't choose arguments, return empty list.

Tool

[Available Tool List & Definition]

Instructions

* YOU MUST OUTPUT IN THE SAME FORMAT AS THE EXAMPLES
WITHOUT EXPLANATIONS.

Example:

 Chain-of-Thought:

 Arguments:

* You must use the FULL, WHOLE ID of the object, window, door, wall as
arguments, NOT just partial.

* If the exact object isn’t found in the list, select the closest match. Even if found, also
check nearby matches.

* Check synonyms, related categories, and functional equivalents. For example, if
searching for “storage,” also consider “cabinet,” “dresser,” “chest,” or “bookshelf.”
Always include closely related categories for the best match.

* You are not limited to including only two objects, walls, doors, or windows in a
tuple. You can include as many as needed. Grouping multiple IDs into a single tuple
helps reduce the number of images generated. If you want to visualize multiple
relationships in one image, make sure to include all relevant IDs together in the same
tuple. Example: [('wall1', 'wall2', 'desk2')]

Examples

[Example Responses for the Argument Selection of Type 5]

Figure 27: Prompt used for Argument Selection in the spatial-relation visualization tool.

30

Preprint

Prompts

<Information_for_Argument_Selection id="your-turn">

User Instruction: $INSTRUCTION$

Previous Constraint Outputs: $PREVIOUS_CONSTRAINT_OUTPUTS$

Current Constraint: $CURRENT_CONSTRAINT$

Tool Sequence: $TOOL_SEQUENCE$

Reasoning behind Tool Sequence: $REASONING$

Previous Tool Outputs: $PREVIOUS_TOOL_OUTPUTS$

Current Tool to Use: $TOOL_TO_USE$

</Information_for_Argument_Selection>

<assistant_response id="your-turn">

<!-- Assistant will fill in Chain-of-Thought and Arguments here -->

</assistant_response>

Figure 28: Prompt used for Argument Selection in the spatial-relation visualization tool.

31

Preprint

Prompts

You are a constraint classification engine.

Your task is to classify a given Constraint into one of the following types within the
Instruction:

• Floor Layout: Describes the spatial configuration or existence of architectural
elements such as rooms, walls, doors, and windows. (overall layout)

• Material Selection: Describes visual or physical surface characteristics (e.g., color,
texture, material) of structural elements of walls or floors. Consider only the walls and
floors, not the other objects.

• Object Selection: Describes what an object looks like (e.g., shape, style, color,
material) — applies to furniture or decorations.

• Object Placement: Specifies where an object is located in relation to the
environment or other objects (e.g., "on the table", "next to the sofa", "in the corner of
the room").

Your output should be the most appropriate **single category label** from the list
above. Respond only with the label.

[Example Responses for the Constraint Classification]

##Output

Instruction: {instruction}

constraint: {constraint}

Output:

Figure 28: Prompt used for Constraint Classification.

32

Preprint

Prompts

You are an expert of extracting constraints from the given instruction.

Identity

Your task is to decompose a given instruction into a list of constraints. These
constraints are decomposed for the purpose of validation. Hence, you must consider
the order of constraints. Also, you must only contain one of the four attributes in each
constraint.

Attributes:

1. Floor Layout: spatial structure and room-to-room or door/window placement (e.g.,
room existence, connections, relative size, or doorway/window layout)

2. Material Selection: materials, textures, and colors of walls, floors, or ceilings

3. Object Selection: object attributes such as color, shape, size, or style (not position)

4. Object Placement: spatial relationships and placement of objects within rooms or
relative to each other

Rules:

1. List all constraints present in the instruction, including implied ones.

 - Example: "There is one wall that has windows. The wall that has windows is
yellow."

 → (1) There is one wall that has windows.

 → (2) The wall that has windows is yellow.

2. If a constraint is only valid under the existence of a specific object or space, express
it as a condition or within its context.

 - Example: "There is a room with red floor. In that room, there is a white bed."

 → (1) There is a room with red floor.

 → (2) In the room with red floor, there is a white bed.

3. Merge multiple attributes describing the same object or space into one constraint.

 - Example: "The three walls are yellow. The three walls have patterns."

 → (1) The three walls in the bedroom are yellow and have patterns.

 - Example: "The table is large. The table is red."

 → (1) The table is large and red.

4. Group mentions of rooms into one unified constraint.

 - Example: "There is bedroom and bathroom in the house. There is living room in
the house."

 → (1) There is bedroom, bathroom, and one living room in the house.

5. Group mentions of existence of objects that are in the identical room into one
unified constraint.

 - Example: "In the bedroom, there is a bed. In that room, there is also a table."

 → (1) In the bedroom, there is a bed and a table.

Figure 29: Prompt used for Constraint Classification.

33

Preprint

Prompts
6. If an object (door, window, wall, objects, etc) exists in the constraint, its location
must be explicitly specified.

- Example: "There is bedroom in the house. The wall is white. There a toy car in the
bedroom. The car is big."

 → (1) There is bedroom in the house.

 → (2) The wall in the bedroom is white.

 → (3) There a toy car in the bedroom.

 → (4) The car in the bedroom is big.

7. You should remember that there are four types of constraint's attributes. If a
sentence contains two or more different types, each type must be separated into its
own constraint.

- Example: "The bed in the bedroom is king-sized and attached to the wall of the
bedroom."

 → (1) The bed in the bedroom is king sized.

 → (2) The bed in the bedroom is attached to the wall of the bedroom.

7-1. Do not combine the existence of windows and other objects in the same room
into a single constraint. Existence of windows is Floor Layout, and Existence of other
objects is Object Placement.

- Example: "The room has a window. The room has a desk and a chair."

 → (1) The room has a window.

 → (2) The room has a desk and a chair.

8. Do not create constraints for the mere existence of walls or a floor. The existence of
walls and a floor is assumed for any room. Only create constraints for specific
materials, textures, and colors of walls or a floor

- Example: "The room has black walls and a beige wooden floor."

 → (X)(Do NOT Create) The room has walls and a floor.

 → (X)(Do NOT Create) The room has walls.

 → (X)(Do NOT Create) The room has a floor.

 → (O)(Create like this) The room has black walls and a beige wooden floor.

[Example Responses for the Constraint Identification]

Input:

Instruction:

{instruction}

Output:

Constraints:

1. <constraint 1>

2. <constraint 2>

...

n. <constraint n>

Figure 30: Prompt used for Constraint Identification.

34

Preprint

Prompts

You are an expert in evaluating the performance of a scene generator. Your task is to
assess whether the scene generated adheres to the specified constraint. Given the
current constraint, collected information(text and visual), your goal is to determine
whether the generated scene complies with the constraint provided.

Identity

You must determine whether the generated scene complies with the provided
constraint. Carefully analyze both the given text information and the visual
information to assess the generated scene.

Instructions

* You need to provide two assessments in evaluation: 1. Evaluation and 2.
Description of Evaluation

* For evaluation, indicate whether the statement is true or false.

* For the Description of Evaluation, include a one to two sentence detailed description
that supports your answer. This description will be used for the next constraint
assessment.

* Do not assess the instruction itself. The description should explain only this
constraint, not evaluate the instruction. It may include details useful for future
assessments of this constraint.

* You must include the full ID of any Room, Window, Object, Door, or Wall you
mention in the description, formatted as <(ID: full_id)> based solely on the given
Information. Example: There is larger bedroom(ID: 'bedroom 3') and smaller
bedroom(ID: 'bedroom 2'). There is a window(ID: 'window|wall|bedroom 2|east|2|2|2')
in bedroom(ID: 'bedroom 2').

* Examples of full_id values by type:

- Room: (ID: 'bedroom 0')

- Window: (ID: 'window|wall|bedroom 3|east|2|2|1')

- Object: (ID: 'table-0 (bedroom 1)')

- Door: (ID: 'door|0|bathroom|bedroom')

- Wall: (ID: 'wall|bedroom 0|north|1|0')

* If [ID]_position is given in the information, it represents the coordinates of the
object. The X and Z axes represent movement on the ground plane, while the Y axis
indicates the vertical direction (height) in 3D space. Example: If bed 0
(bedroom)_position is {'x': 1, 'y': 2, 'z': 4}, it means the object bed is located at the
coordinates (1, 2, 4).

* Evaluation must be in the format below:

 If the scene complies with the constraint:

 Evaluation format: <<True, [One to two sentence detailed description of the
answer]>>

 If the scene does not comply with the constraint:

 Evaluation format: <<False, [One to two sentence detailed description of the
answer]>>

Figure 30: Prompt used in Constraint Validation for Floor Layout constraints.

35

Preprint

* All rooms, walls, windows, objects, doors' Id is unique. The assetId of windows,
objects, doors can be the same.

* When evaluating, consider all available information — not just IDs — including
textual information and visual information, to ensure a thorough and accurate
assessment.

* Please evaluate only the part that comes after the conditional statement in the
current constraint. The condition (e.g., "in the room with 3 dolls") has already been
evaluated. Use the provided information to evaluate the remaining part of the
constraint.$VISUAL_ADDITIONAL_INSTRUCTION$

Examples

[Example Responses for Validation]

Output

<Information_for_Validation id="your-turn">

Instruction: $INSTRUCTION$

Current Constraint: $CURRENT_CONSTRAINT$

Information: $INFORMATION$

</Information_for_Validation>

<assistant_response id="your-turn">

Chain-of-Thought:

Evaluation:

</assistant_response>

Figure 31: Prompt used in Constraint Validation for Floor Layout constraints.

36

Preprint

Prompts

You are an expert in evaluating the performance of a scene generator. Your task is to
assess whether the scene generated adheres to the specified constraint. Given the
current constraint, collected information(text and visual), your goal is to determine
whether the generated scene complies with the constraint provided.

Identity

You must determine whether the generated scene complies with the provided
constraint. Carefully analyze both the given text information and the visual
information to assess the generated scene.

Instructions

* You need to provide two assessments in evaluation: 1. Evaluation and 2.
Description of Evaluation

* For evaluation, indicate whether the statement is true or false.

* For the Description of Evaluation, include a one to two sentence detailed description
that supports your answer. This description will be used for the next constraint
assessment.

* Do not assess the instruction itself. The description should explain only this
constraint, not evaluate the instruction. It may include details useful for future
assessments of this constraint.

* You must include the full ID of any Room, Window, Object, Door, or Wall you
mention in the description, formatted as <(ID: full_id)> based solely on the given
Information. Example: The room(ID: 'classroom 0') has walls(IDs: 'wall|classroom|
west|0', 'wall|classroom|north|1', 'wall|classroom|east|2') that are yellow.

* Examples of full_id values by type:

- Room: (ID: 'bedroom 0')

- Window: (ID: 'window|wall|bedroom 3|east|2|2|1')

- Object: (ID: 'table-0 (bedroom 1)')

- Door: (ID: 'door|0|bathroom|bedroom')

- Wall: (ID: 'wall|bedroom 0|north|1|0')

* Assess general color constraints flexibly: If the constraint says “brown,” accept any
reasonable shade like light brown or dark brown, unless the constraint explicitly
specifies the shade (e.g., “light brown” or “dark brown”).

* Evaluation must be in the format below:

 If the scene complies with the constraint:

 Evaluation format: <<True, [One to two sentence detailed description of the
answer]>>

 If the scene does not comply with the constraint:

 Evaluation format: <<False, [One to two sentence detailed description of the
answer]>>

* All rooms, walls, windows, objects, doors' Id is unique. The assetId of windows,
objects, doors can be the same.

Figure 31: Prompt used in Constraint Validation for Material Selection constraints.

37

Preprint

* When evaluating, consider all available information — not just IDs — including
textual information and visual information, to ensure a thorough and accurate
assessment.

* Please evaluate only the part that comes after the conditional statement in the
current constraint. The condition (e.g., "in the room with 3 dolls") has already been
evaluated. Use the provided information to evaluate the remaining part of the
constraint.$VISUAL_ADDITIONAL_INSTRUCTION$

Examples

[Example Responses for Validation]

Output

<Information_for_Validation id="your-turn">

Instruction: $INSTRUCTION$

Current Constraint: $CURRENT_CONSTRAINT$

Information: $INFORMATION$

</Information_for_Validation>

<assistant_response id="your-turn">

Chain-of-Thought:

Evaluation:

</assistant_response>

Figure 32: Prompt used in Constraint Validation for Material Selection constraints.

38

Preprint

Prompts

You are an expert in evaluating the performance of a scene generator. Your task is to
assess whether the scene generated adheres to the specified constraint. Given the
current constraint, collected information(text and visual), your goal is to determine
whether the generated scene complies with the constraint provided.

Identity

You must determine whether the generated scene complies with the provided
constraint. Carefully analyze both the given text information and the visual
information to assess the generated scene.

Instructions

* You need to provide two assessments in evaluation: 1. Evaluation and 2.
Description of Evaluation

* For evaluation, indicate whether the statement is true or false.

* For the Description of Evaluation, include a one to two sentence detailed description
that supports your answer. This description will be used for the next constraint
assessment.

* Do not assess the instruction itself. The description should explain only this
constraint, not evaluate the instruction. It may include details useful for future
assessments of this constraint.

* You must include the full ID of any Room, Window, Object, Door, or Wall you
mention in the description, formatted as <(ID: full_id)> based solely on the given
Information. Example: In the bedroom(ID: 'bedroom 2'), the desk(ID: 'brown_desk-0
(bedroom 2)') is on the left of the couch(ID: 'gereen_sofa-2 (bedroom 2)').

* Examples of full_id values by type:

- Room: (ID: 'bedroom 0')

- Window: (ID: 'window|wall|bedroom 3|east|2|2|1')

- Object: (ID: 'table-0 (bedroom 1)')

- Door: (ID: 'door|0|bathroom|bedroom')

- Wall: (ID: 'wall|bedroom 0|north|1|0')

* If [ID]_position is given in the information, it represents the coordinates of the
object. If [ID]_rotation is given, it indicates how many degrees the object has rotated
around a specific axis. The X and Z axes represent movement on the ground plane,
while the Y axis indicates the vertical direction (height) in 3D space. Example: If bed
0 (bedroom)_position is {'x': 1, 'y': 2, 'z': 4}, it means the object bed is located at the
coordinates (1, 2, 4) and If bed 0 (bedroom)_rotation is {'x': 0, 'y': 90, 'z': 0}, it means
the object bed is rotated 90 degrees around the Y-axis.

* Only evaluate the specific aspects explicitly mentioned in the constraint. If a
constraint states that an object is 'white', and does not specify whether it refers to the
entire object of a part of it (e.g., frame, surface, bedding), you should assume it refers
to the overall appearance unless otherwise specified. Do not evaluate parts that are not
mentioned.

* All rooms, walls, windows, objects, doors' Id is unique. The assetId of windows,
objects, doors can be the same.

Figure 32: Prompt used in Constraint Validation for Object Placement constraints.

39

Preprint

* Evaluation must be in the format below:

 If the scene complies with the constraint:

 Evaluation format: <<True, [One to two sentence detailed description of the
answer]>>

 If the scene does not comply with the constraint:

 Evaluation format: <<False, [One to two sentence detailed description of the
answer]>>

* When evaluating, consider all available information — not just IDs — including
textual information and visual information, to ensure a thorough and accurate
assessment.

* Please evaluate only the part that comes after the conditional statement in the
current constraint. The condition (e.g., "in the room with 3 dolls") has already been
evaluated. Use the provided information to evaluate the remaining part of the
constraint.$VISUAL_ADDITIONAL_INSTRUCTION$

Examples

[Example Responses for Validation]

Output

<Information_for_Validation id="your-turn">

Instruction: $INSTRUCTION$

Current Constraint: $CURRENT_CONSTRAINT$

Information: $INFORMATION$

</Information_for_Validation>

<assistant_response id="your-turn">

Chain-of-Thought:

Evaluation:

</assistant_response>

Figure 33: Prompt used in Constraint Validation for Object Placement constraints.

40

Preprint

Prompts

You are an expert in evaluating the performance of a scene generator. Your task is to
assess whether the scene generated adheres to the specified constraint. Given the
current constraint, collected information(text and visual), your goal is to determine
whether the generated scene complies with the constraint provided.

Identity

You must determine whether the generated scene complies with the provided
constraint. Carefully analyze both the given text information and the visual
information to assess the generated scene.

Instructions

* You need to provide two assessments in evaluation: 1. Evaluation and 2.
Description of Evaluation

* For evaluation, indicate whether the statement is true or false.

* For the Description of Evaluation, include a one to two sentence detailed description
that supports your answer. This description will be used for the next constraint
assessment.

* Do not assess the instruction itself. The description should explain only this
constraint, not evaluate the instruction. It may include details useful for future
assessments of this constraint.

* If visual information is provided, always refer to the image again even when textual
descriptions are available. In particular, for attributes like color and size, the image
should be treated as the primary source of truth over the accompanying text.

* Allow some flexibility when evaluating colors, as slight variations may still satisfy
the intent of the instruction.

* You must include the full ID of any Room, Window, Object, Door, or Wall you
mention in the description, formatted as <(ID: full_id)> based solely on the given
Information. Example: In the living room(ID: 'living room 2') there is a couch(ID:
'couch-0 (living room 2)').

* Examples of full_id values by type:

- Room: (ID: 'bedroom 0')

- Window: (ID: 'window|wall|bedroom 3|east|2|2|1')

- Object: (ID: 'table-0 (bedroom 1)')

- Door: (ID: 'door|0|bathroom|bedroom')

- Wall: (ID: 'wall|bedroom 0|north|1|0')

* If [ID]_position is given in the information, it represents the coordinates of the
object. If [ID]_rotation is given, it indicates how many degrees the object has rotated
around a specific axis. The X and Z axes represent movement on the ground plane,
while the Y axis indicates the vertical direction (height) in 3D space. Example: If bed
0 (bedroom)_position is {'x': 1, 'y': 2, 'z': 4}, it means the object bed is located at the
coordinates (1, 2, 4) and If bed 0 (bedroom)_rotation is {'x': 0, 'y': 90, 'z': 0}, it means
the object bed is rotated 90 degrees around the Y-axis.

Figure 33: Prompt used in Constraint Validation for Object Selection constraints.

41

Preprint

* Assess general color constraints flexibly: If the constraint says “brown,” accept any
reasonable shade like light brown or dark brown, unless the constraint explicitly
specifies the shade (e.g., “light brown” or “dark brown”).

* Lighting may cause white or light-colored objects to appear bluish or gray. Please
consider that objects may still be white despite their current appearance. Focus on the
object's true color under neutral lighting, not just how it looks in this image.

* Only evaluate the specific aspects explicitly mentioned in the constraint. If a
constraint states that an object is 'white', and does not specify whether it refers to the
entire object or a part of it (e.g., frame, surface, bedding), you should assume it refers
to the overall appearance unless otherwise specified. Do not evaluate parts that are not
mentioned.

* Evaluation must be in the format below:

 If the scene complies with the constraint:

 Evaluation format: <<True, [One to two sentence detailed description of the
answer]>>

 If the scene does not comply with the constraint:

 Evaluation format: <<False, [One to two sentence detailed description of the
answer]>>

* All rooms, walls, windows, objects, doors' Id is unique. The assetId of windows,
objects, doors can be the same.

* When evaluating, consider all available information — not just IDs — including
textual information and visual information, to ensure a thorough and accurate
assessment.

* Please evaluate only the part that comes after the conditional statement in the
current constraint. The condition (e.g., "in the room with 3 dolls") has already been
evaluated. Use the provided information to evaluate the remaining part of the
constraint.$VISUAL_ADDITIONAL_INSTRUCTION$

Examples

[Example Responses for Validation]

Output

<Information_for_Validation id="your-turn">

Instruction: $INSTRUCTION$

Current Constraint: $CURRENT_CONSTRAINT$

Information: $INFORMATION$

</Information_for_Validation>

<assistant_response id="example-3">

Chain-of-Thought:

Evaluation:

</assistant_response>

Figure 34: Prompt used in Constraint Validation for Object Selection constraints.

42

Preprint

Prompts

You are an expert at evaluating whether the natural language instruction aligns with
the given 3D scene images. Your judgment is aligned only if all instruction details are
fully and unambiguously visible in the images; otherwise, you consider them not
aligned.

Identity:

You are a professional evaluator tasked with determining whether a 3D generated
scene, as depicted in multi-view and top-down rendered images, fully satisfies a given
natural language instruction.

Instruction:

* Default to "False" unless every requirement (objects, counts, spatial relations,
orientations, colors, materials, textures, absences) is fully and clearly visible without
ambiguity.

* Output "True" only if all requirements are met with absolute clarity and no
discrepancies.

* Output "False" for any unclear, occluded, or missing element; provide concise
reasoning and a one-sentence summary of the key evidence or deficiency.

Output Format (must be followed exactly):

Reasoning: <Step-by-step evaluation of each requirement, addressing visual evidence
or its absence>

Description: <One-sentence summary of the key visual evidence or deficiency leading
to the judgment>

Validity: <True/False>

The given natural language instruction is: $INSTRUCTION$

Figure 34: Prompt used for baseline VLM evaluation of instruction–scene validity

43

	Introduction
	Related Work
	LEGO-Eval: Evaluation with Tool-Augmented VLMs
	Evaluation Framework
	Tool Set
	LEGO-Bench

	Experiments
	Comparison of Evaluation Methods
	Setup
	Results
	Ablation Study

	Comparison of Text-guided 3D Scene Synthesis Methods
	Setup
	Results

	Analysis
	Conclusion
	The Usage of Large Language Models (LLMs)
	LEGO-Bench
	Data Annotation Tool
	Details of Human Annotation
	Statistics

	LEGO-Eval
	Model Inference
	Metric Details
	Tool Set
	Environment Interaction
	Multimodal Reasoning
	Textual Reasoning

	Additional Results
	Argument Selection Has the Affects on The Evaluation Performance.
	Do people really give long instructions to describe the room?

	Baselines
	Scene Evaluation
	Scene Generation

	Limitations
	Examples of Tool Image Outputs
	Prompts used in our Works

